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The flow of a viscous gas through a shock wave (strong shock) of thickness 0 (G), where 
s = fi-% o , and Ra is the appropriate Reynolds number, has the character of a boundary 

layer flow and was investigated in [Il. A two-dimensional problem is discussed in the 

present paper, concerning the motion of the gas across a rectilinear acceleration discon- 

tinuity in sn inviscid problem (a weak shock). It is shown that if the viscosity of the gas 
is taken into account in the neighborhood of the line of a weak shock, a ‘boundary layer’ 
of thickness 0 (E), is formed, in which the gas motion is described by a quasi-linear para- 

bolic equation of the second order and nnffke the shock wave, is essentially not of one- 

dimensional character. Also it is shown that on passing across the line of a weak shock, 

the terms 0 (8) in the gas parameters suffer a discontinuity (just as the terns 0 (1) in the 

case of a shock wave), and formulas are found for these discontinoities. 

1. Let us for example consider the problem of a profile BOCDEB (see figure), with a 

wedgelike leading edge OBE, situated in a 
homogeneous, supersonic, viscons flow of a 
perfect gas. If the case of an inviscid flow is 
considered, then AE is a part of’the bow shock 
wsve the region AOE is the region of homogen- 
eous flow, while the region AOC is the region of 

a simple wave. At the point 0 the curvature of 
the profile has a discontinuity and the straight 
Hne OA is a line of a weak shock. Let the 
Oymaxis of Cartesian coordinates coincide with 
the line OA ; the parameters of the homogeneoas 
flow in the region OAB will be denoted below by 

a subscript 0, so that F!o is the velocity aad Ma 
is the Mach No. in the region OAR ; also 

~- 
I 1 /, --0=----t 

1 

vo MO v, 
vo= y’Moa--1 -- 

MO 

728 



Supersonic flow of a viscous gas in the region of a weak shock 729 

Where u and tr are the velocity components of the particles of the gas in the direction 

of x* and y-axes respectively. In the neighborhood of OA in the region of the simple wave 

we have 

where y is the ratio of specific heats, and the constant ye is determined by the profile curv- 

ature at the point 0 when x = + 0. If the profile curvature at x = + 0 is zero (continuous), 
then u = 0. In the case of a viscous gss, a boundary layer of thickness 0 (E), is formed 
near the surface of the profile, where s = Ro”; the Reynolds No. R. is related to the 

parsmeters of the gas in the region OAB, the shock wave AB is changed into a region of 
thickneas 0 (se) , but, near OA, it forms a ‘boundary layer’, as will be shown later, of 

thickness CJ (s) (region 2 in the figure). The regions adjoining 2 are indicated in the figure 
by the numbers 1 and 3. (We shall assume 13: OS to be a characteristic dimension). If the 

linear dimensions are related to I, the velocity components of the gas to I’, , the density 

p to ~0, the pressure p to p. Voa, the specific enthalpy i to VO , r the coefficients of viscosity 

p and x to br then the equations of the laminar flow of a viscous gas (the Navier - Stokes 

equation) take the form u$+*$_ 

p(ug+ug)= 

AE+&{L[p (i!$ +g,+5343+3(g+3j 
a (PU) (1.2) 

-- 
8X 

+ a (PC-~ 
8Y 

i=-I.-2, 
T--1P 

r=r(i), h=?u(i), R. = ‘@+l -* v Q=s- 
Fe k 

where Ro is ReynoIds number, D is the Prandtl number, cp is the specific heat at 

constant pressure, k is the coefficient of thermal conductivity for the gas. For the dfmension- 
less values, the same nomenclature is observed as for the dimensional values. 

2. In the regions1 and 3 (see figure) the gas parameters can be represented in the 

form 121 

f = Fe (2. Y) + EFI (z, y) + SF (z, y) + . . . (8 += R,-‘lr) (2.1) 

where u, v, p, p and i are understood to be represented by f. The terms Fe (x, y) define the 
inviscid flow, the terms F, (z, y) indicate the influence of the displacement velocity of the 
boundary layer. 

In the region 2 we will seek a solation to (I.$ in the form 
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i.e. 

P= &““Pl(5, Y)-I-@Pa(E, y)+.*- 

p = 1 + EPl(4, Y) + e32 (5% Y) + * * * 

(2.2) 

(2.2) 
Rewriting the system of equations (1.2) in terms of the variables C$ and y , substituting 
into it and eqnating the coefficients of like powers of e, we obtain a system of eqna- 

tions defining the coefficients of the series of (2.2), which for the first two coefficients can 
be written in the form 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

+ 1/M,“--1 $(M$pl-pl) -+$?$ pl---!!?_- 
rMo2 1 

=o 

where & and ~0 are the values of X and p for i = 1 / (y - $)&fog. From (2.3), it 
follows that 

(2.8) 
UI + MOPS = al fv). VI =.a2 (YL PI i- MOUI = =a 6.~1~ MOPI - PI = ~4 (d 

Out of the four equations of (2.8), only three are independent. Sabstituting sr from the 
first eqaation into the third, we obtain ~,zPr - PZ = Moor (_cJ) - a3 (y).) Fourth equation 
for finding u,, t’,, p,, and pr is obtained from the system of eqnationa (2.4) to (2.8). 
Adding Eqnatione (2.6) and (2.7), substracting Equation (2.4) from the resnlt and mnltipfy- 
ing subsequently by MO, we. obtain 

Equations (2.8) and (2.9) yield, after some transformations, an equation for u1 
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MO2 -fr - 1) PO + j@ + $ 

i 
~_... 0 

6 (2.10) 

---MO JfM$-1% + 111,~ 
,‘_ y--d/r, dvl 1; ,110’ -- I +Icr,_ =u 

dy dy 

3. Equation (2.10) together with (2.8) describes asymptotically (as E + 0) the viscous 

gas flow near any rectilinear weak shock. We shall now digress from the problem of the 

profile and consider the case when the flow incident on the weak shock has the values 

% ~1, ~1. and pt constant, supposing that the flow is one-dimensional. The equation 

(2.10) then takes the form 

Integrating (3.1) with respect to t, we obtain 

(3.2) 

Afar (r - I) ft! + ?.$a + 2p. 
[ 0 I 

d!! = T+ M&Q - (~Mo%r - UaMa) u1 -j- c (c = const) 

Equation (3.2) can be presented in the form: 

1 (Y--1)ILo 
6 

+ho+2po 3 I = q! (ut - u1-) (l&l - IQ-+) (3.3) 

Where u;” and s,+ satisfy the relations 

Since or + nl- when 5 + - m , and nr- is a real number, therefore n,+ is a real number 

and u,+n,+when ~$-r+ao, and Equation (3.3) describes the gas flow in a weak shock 

wave. From (3.4), taking into account (2.8). the following formula is derived 

Ul 
+_-l -3 _ 

---1 +-&% (pr---&) 
T+* 

(3.5) 

We should note that the value u,+ varies with the inclination of the weak shock (i.e. 

with Ma) ; for a direct shock Ma = 1, and the formula (3.5) becomes a formula which can be 

obtained from the known results for a direct shock (see, for example, [3] ). 

4. From section 3 it follows that the flow near a weak shock has a substantially non- 

one-dimensional character; it is described by a parabolic quasi-linear equation (2.10). To 

find its solution in a concrete example the behavior of ut when c + f 00 must be known as 

well as the distribution of u1 for certain values of y . In the problem with the profile, the 

behavior of U~ with given y is defined by the solution of system (1 - 2) in the neighborhood 

of the point 0 (see figure). Let us determine the behavior of u1 as t+ fm. In the regions 

1 to 3 (see figure) u can be represented by a series of the type (2.1). For the region 1 

u=&t&U1-(z, y)+-0(e2, 

while for the region 3 we have according to (Ll), 

n = uo+ (% Y) t u ‘r?+ (z, Y) + 0 (es) = & + - 
Y- Ya 

2 + 0 (2”) + auf (x. Y) + 0 (8’) 

Assuming that CT,- (5, y), Ur+ (s, y), . . . are represented asymptocially by a series 
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in integrd powers of x, we obtain 

11--_- & + e IUl’ (0, Y) + 0 (41-t 0 W) 
(4.1) 

U=t 
&+A 

2 + 0 V) + 8 [ u1+ (0, Y) + 0 (211 + 0 (89 

Changing the variabIe to E = z.6 and regrouping the terms of (4.1) result in the 

formala 

(4.2) 

The relations (4.2) are trae for large tand small x. From (4.2) and (2;2) it follows 

that 

u, (& 4 -w,y)= u,- 141 g) + the exponential terms 
(4.3) 

u, (& - + h, PI = Y* E + u,+ (0, &I + the exponential terms 

The above relations are the conditions that tits expansions (2.2) and (2.1) are not in- 

dependent of ssch’other. 

5. We will now clarffy whether Equation (2.10) has solutions with asymptotic behavior, 

described by the form&a (4.3), and how U,’ (0, y) and V,+ (0, y) are related. From equa- 

tion (2.10) ft follows that all -, U,’ when E -_, - oo (yl + VI-,p, 3 pIL), then 

--- (5.1) 

Sobmtitotion of a,, according to (2.8) reenlte, for x = - 0, in 

(2u1-- - V& -*M&P~- = 0 (5.2) 

If the expanaiona (2.1) are substituted into the sysrsm of equations (1.2), in order to 

obtain a ayetem of equations foi the coefficients with the suffix 1, then (5.2) provides a 

ralationshfp, which is falMled along the characteristic (z = 0) and wil1 always be satis- 

fied. After the integration of (5.1) with respect to y, we obtain, for 2 = - 0, 

ui-=+- R-i- ( f&q - +c*) (a1 = u1- + MaI-, eo = cow (5.3) 

Inveatigatfon of equation (2.10) shows that it has solutions with the following asymptotic 

behavior 

e -W--W, s=v~-(O,Y)+g(y)e”O(V)f’-C... 

Where g (y) is an arbitrary fktnction of y 

q (y) = rc + 6 (a/ - YO)l-l > 0 

(wfth the constant c mtitibly chosen) 

a=i7$%& [(r - WCJ-’ -i- k -I- 344 

The dacreasa of the faaction q (y) with increasiq y corresponds to the broadening of 
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the region 2 (see the figure) with increasing distance from the profile. 

For c+ + 00 we shall seek aa asymptotic representation, according to (4.3) 

w=* 5 t B(Y) t R (f, Y) R-+=, R&O) (5.4) 

Substitution of (5.4) into (2.10) gives 
(5.5) 

- ~aS(T$_f~ *a+ f@f*aal- ad@d a 
Y-Ye 

+ 2i& )1&s _ 1 *E_ 

-2M* VW= 3 +Mo Jfxm~+nfe$+* 

Equating the terms of like powers in (5.5) to zero, results in the following equations 

for a and p 

(5.61 

The roots of (5.6) will be 

2 V-m 
u1=- 

r+l MB 

(satisfying exactly fl.l),and(4.3)),iand a, = 0. For the case a= or, the equation for p 
has the fom 

(5.7) 

Forthecaseu=&,=Owehave 

f 
(5.8) 

The general solution of (5.7) fs given by the formala 

which, by (2.8) and (5.3) together with the fact that vi = a, (I/) = VI:., becomes 

p=u,-+ f 
(r+~)(Y+Yo) 

$[-2W + ‘rMo (W-+)]dy (5.9) 

Where pi- is the coefficient in the expansion (2.1), taken when z = - 0. Inspection 

(5.5) for R shows that it poseqsses solutions with asymptotic properties, when e-, + eo, 

of the form 

R = C (Y)e- Q, (Y)t% + . . . , @ fsrf = I% (Y - !dP - 6 (!i - &Jl-’ > 0 

where G (y) is an arbitrary function of y, and constant e, is suitably chosen. From (4.3). 

15.41 aad (5.9) it follows, that 
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(5.10) 

where c is a constant, U, + is taken at x = -+ 0, while the remaining functions at x = - 0. 

The formula (5.10) shows that the terms 0 (E) in the expansion (2.1) undergo a disconti- 

nuous change across the line of the weak shock(x=O), and at the same time a basic part of this 

discontinuity, which is defined by the integral in (5.10), depends on the dissipative pro- 

cesses in the region 2 (see the figure) ; constant c cannot be determined without consider 

etion of the flow in the nefghborhood of the point 0. It is quite possible that the value of 

constant c is small in comparison with the integral, and it can be neglected, since c de- 

termines the influence of parts of the flow in the neighborhood of the point 0, while the 

value of the integral depends on the acceleration in a simple wave when x = + 0. For the 

case a=a, = 0 from (5.8) we obtain 

8 = lJ1+ = iJ1- + c (5.11) 

Where c is a constant, which can evidently be equal to zero. Thus, in the case where 

the profile curvature at the point 0 is continuous, the terms 0 (c) in the transformations 

(2.1) are also continuous on the line of the weak shock. 

6. Digressing from the problem of the profile, we will consider the C8SS when the flow 

upstream of a line of the weak shock has constant terms 0 (8) . From (S.lOf, following 

formula for this case 

lJl+ = U,-+ $- il + Cl =const 
which can be represented in the form 

ul+ Z r -l$&-+xq 
rfl p1- -* + 

3 7Y&i=3 

From (6.1) it follows, that if the term containing cr is negIected, Ur+ is also constant, 

though different from a,+, given by the formula (3.5) for a weak shock. If it is additionally 

assumed that PI- =r: pl- = pl- = 0 in the formulas (3.5) and (6.11, then in the formula 

(3.5) the presence of ul- causes the appearance of a,+ with the opposite sign, while at the 

same time in (&I), the sign of Uzf is the same as that of U,-. 

7. In conclusion, we note that the character of the behavior of the terms 0 (e) in 

expansions of the type (2.1), established for the case of a rectilinear shock, remains the 

same in the case of B curved weak shock (i.e. if the curvature of the surface of a body 

possesses a discontinuity at any point, then at the weak shock line originating from it, the 

terns 0 (e) undergo discontinuities in expansions of the type (2.1) ; if the curvature is 

continuous, then the terms 0 (s) are continuous). 
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